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Abstract—An enantioselective synthesis of �,�-unsaturated �- and �-lactams was proposed based on a simple strategy using the
initial preparation of cis vinylogous aminoesters by the Horner reaction followed by a mild intramolecular cyclisation. © 2001
Elsevier Science Ltd. All rights reserved.

In recent years an increasing number of �,�-unsatu-
rated �-lactams have been isolated and characterised.
3,4-Dihydro-2H-pyrrolidin-2-ones and structurally
related alkaloids are also of a great interest due to their
antitumour or platelet aggregation inhibition activities.1

Pyrrolams, bicyclic lactams such as 3,4-dihydro-2H-
pyrrolizidin-2-ones, have been recently reported. They
exhibit hepatotoxic, mutagenic and carcinogenic activi-
ties.2 Likewise, optically active �,�-unsaturated �-lac-
tams have been shown to be versatile starting materials
for the asymmetric synthesis of a wide range of biolog-
ically active compounds.3

The development of general methods for the prepara-
tion of these heterocycles or synthetic analogues is of
increasing interest. Many syntheses have been reported,
often in connection with a particular structure with a
sophisticated method that needs numerous steps.4,5 In
this paper, we describe a new, short, convenient and
enantioselective synthesis of substituted �,�-unsaturated
�- and �-lactams 1 based on a relatively classical, but
efficient strategy.

In this approach the construction of the heterocycle is
based on the intramolecular reaction of cis vinylogous

aminoesters 2 obtained from a cis olefination of
aminoaldehydes.†

We have previously reported that the insertion of a cis
ethenyl CH�CR1 group between the �-carbon and the
carboxyl group into a proline induced the formation of
a very stable closed conformation.6 As a result, the
ester group of this cis vinylogous aminoester was found
to be positioned near to the amino moiety and a
possible cyclisation was clearly a favoured transforma-
tion that deserved to be studied. In this letter we
describe the preparation of cis vinylogous aminoesters
with the intention of studying their possible subsequent
intramolecular cyclisation into unsaturated �- or �-lac-
tams 1 in optically pure form.

cis Vinylogous aminoesters 2 were prepared using a
Horner reaction between the suitable phosphonate
anions 4 and �- or �-N-(t-butoxycarbonylamino)-alde-
hydes 3 (Scheme 1). The cis and trans relative configu-
rations of the diastereomers were deduced from their
1H NMR spectra. Mainly cis vinylogous aminoesters
were easily obtained with the lithium anion 4a derived
from ethyl(bis-ethoxyphosphinyl)-2-alcanoate. The for-
mation of the esters proceeded with a good cis stereose-
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† A cis vinylogous aminoester is an aminoester where R1 and H present a cis relationship on the double bond.
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Scheme 1.

Table 1. Results of the Horner reaction with 4 and aminoaldehydes 3 and removal of the N-Boc group to give 5

4 2 (yield %) 5 (yield %) trans/cisan R2R1 R3

4a 2a (82) 5a (97) 10/90CH30 H CH3

5b (89) 2/982b (88)4a0 CH3HCl
2c (95)F 5c (95) �2/98bH CH3 4a0

5d (94) 40/602d (60)4aH1 CH3 H
2e (90)Cl 5e (90) 16/84H H 4a1

F 2f (97) 5f (97) �2/98bH H1 4a
10/902g (79) 5g (90)4b0 -(CH2)3-CH3

2h (95) 5h (95) 33/670 -(CH2)3-Cl 4a
�2/98b4a-(CH2)3- 5i (92)F0 2i (92)

a trans/cis determined by 1H NMR of the crude product.
b Only one isomer observed by 1H and 13C NMR.

lectivity. To our knowledge this olefination reactant has
not yet been applied to the preparation of cis vinyl-
ogous aminoesters, because it was well-known to result
in mostly trans unsaturated compounds.7 In the case of
2g, the steric hindrance of the pyrrolidine moiety into 3
combined with the methyl �-C substituent into 4a (R1=
Me) promoted the formation of the major trans ester.
Consequently, the preparation of 2g was accomplished
with Still’s reagent, potassium ethyl [bis(1,1,1-trifl-
uoroethoxy)phosphinyl]-2-propanoate 4b (R1=Me),8

that led to the major cis isomer. The separation of the
cis and trans stereomers was not necessary at this step
to continue the strategy.9

Removal of the N-t-butoxycarbonyl protecting group
in vinylogous aminoesters 2 with HCl/ether yielded the
corresponding chlorohydrate salts 5 without affecting
the double bond, whereas we have noted that the usual
conditions TFA/CH2Cl2 promoted the partial decom-
position of the vinylogous residue (Table 1).

Addition of triethylamine (2.5 equiv.) to 5 over 30 min
at 40°C in toluene provided cyclised material 1 in
excellent yield (Table 2). The sole cis isomer 5 was
converted selectively to �- or �-lactam 1, whereas the
minor trans isomer was not transformed and was
entirely recovered.

The strategy allowed the obtention of unsaturated �-
and �-lactams 1 with different substituents at the 3 or 5
positions and also allowed the preparation of unsatu-
rated five- or six-membered lactams and bicyclic lac-
tams with high yields.10 No trace of intermolecular
reaction products was detected, even in the case n=2.
The mild cyclisation conditions, and the enhanced reac-
tivity of vinylogous aminoesters 5 compared to satu-

rated aminoesters11,12 could be explained by the folded
structure of 5, and as a consequence, by a most
favourable entropic factor.

The optical purity was determined for 1g, the sole
compound of Table 2 for which the absolute configura-
tion was known.5b If it is assumed that this lactam 1g
described in Reference 5b was enantiopure, the enan-
tiomeric excess of 1g obtained by us from 5g was 92%
(lit.:5b [� ]D20=+12, c=0.51, CHCl3, found: [� ]D20=+11,
c=1.9, CHCl3). As a consequence, the method gave the
�,�-unsaturated �-lactam 1g in high enantiomeric

Table 2.

R3R2R1n1 [� ]DYield (%)a

1a 0 CH3 H CH3 89 +132
0 Cl H1b CH3 91 +139
0 F H1c CH3 87 +141
1 CH3 H1d H 94 –

–1 871e HHCl
90HHF11f –

0 CH31g -(CH2)3- 85 +11
0 Cl1h -(CH2)3- 92 –b

F1i +690-(CH2)3-0

a Calculated from cis isomer 5.
b Unstable compound.
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purity. This result was important because the stereo-
chemical instability of such unsaturated �-lactams
under most reaction conditions was recently
mentioned.2,5b

In summary, we have developed a simple enantioselec-
tive access to �,�-unsaturated lactams via a facile cycli-
sation of cis vinylogous aminoesters, which provides a
versatile route to the construction of five- and six-mem-
bered ring heterocycles and substituted pyrrolams. This
route can be advantageously compared to that previ-
ously described with more sophisticated methods and
numerous steps.
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